
Proceeding of the 6th International Symposium on Artificial Intelligence and Robotics & Automation in Space:
i-SAIRAS 2001, Canadian Space Agency, St-Hubert, Quebec, Canada, June 18-22, 2001.

VIPER: Virtual Intelligent Planetary Exploration Rover

Laurence Edwards Lorenzo Flückiger∗ Laurent Nguyen† Richard Washington‡

Autonomy and Robotics Area, NASA Ames Research Center, Moffett Field, CA 94035
{ edwards | lorenzo | nguyen | richw } @artemis.arc.nasa.gov

Keywords: Simulation, 3D visualization, plan ex-
ecution, planetary rovers.

Abstract

Simulation and visualization of rover be-
havior are critical capabilities for scientists
and rover operators to construct, test, and
validate plans for commanding a remote
rover. The VIPER system links these capa-
bilities, using a high-fidelity virtual-reality
(VR) environment, a kinematically accu-
rate simulator, and a flexible plan execu-
tive to allow users to simulate and visualize
possible execution outcomes of a plan under
development.

This work is part of a larger vision of a
science-centered rover control environment,
where a scientist may inspect and explore
the environment via VR tools, specify sci-
ence goals, and visualize the expected and
actual behavior of the remote rover.

The VIPER system is constructed from
three generic systems, linked together via a
minimal amount of customization into the
integrated system. The complete system
points out the power of combining plan ex-
ecution, simulation, and visualization for
envisioning rover behavior; it also demon-
strates the utility of developing generic
technologies, which can be combined in
novel and useful ways.

1 Introduction

Imagine trying to drive when your vehicle only does
approximately what you command, you only catch
occasional glimpse of your environment, 20 minutes
pass between your command and the vehicle’s re-
sponse, and to top it off, you don’t really know how

∗NASA contractor with QSS.
†Author’s current address is LightLogic, Inc., 8674

Thornton Avenue, Newark, CA 94560.
‡NASA contractor with RIACS.

your vehicle works. This is the world of scientist-
directed planetary rover exploration.

Planetary rovers are scientific tools for exploring
an unknown world. One focus of the Autonomy and
Robotics Area (ARA) at the NASA Ames Research
Center is to design and develop the tools and tech-
niques that allow scientists to control a rover effi-
ciently and effectively. This presents challenges both
in the user interface and in the underlying rover con-
trol methods.

One important element of the planetary rover con-
trol is the ability to simulate and visualize possible
execution outcomes of a plan under development.
We have developed the VIPER system, which links
plan execution, rover simulation, and a high-fidelity,
realistic virtual-reality (VR) environment. This sys-
tem is one part of a larger architectural design under
development that includes tools for science goal spec-
ification and plan generation.

The ultimate vision for the overall architecture is
that scientists at “mission control,” and potentially
elsewhere in the world, will both specify and ob-
serve the rover’s operation as well as science prod-
ucts through the VR environment. The scientists can
examine physical features of the environment (dis-
tance, volume, cross-sections) and specify science-
level goals, for example to go to a rock and drill a
small sample. These goals are then interactively re-
fined at mission control with the help of a planning
and scheduling system, adding constraints of rover
motion, resources, and time to arrive at a final plan.
Once the plan is ready, it is communicated to the
rover.

On board the rover, the plan is executed by testing
and monitoring conditions on time, resources, and
rover and environmental state. The same plan ex-
ecuted multiple times may produce many different
behaviors, based on the initial conditions and the
variability of the rover’s interactions with the envi-
ronment.

The VIPER system allows users to simulate and
visualize possible execution outcomes of a plan un-
der development. We have developed a kinematically
accurate simulator of the rover that allows the sci-

entists and rover engineers to understand more con-
cretely the effects of plan actions. The plan execu-
tion system commands the simulator, which in turn
controls a model of the rover within the VR environ-
ment. This provides an immediate connection be-
tween the plan and the resulting execution behavior.
Each of the technologies was developed as a generic
system in a separate context from this system; the
resulting system was then assembled quickly with rel-
atively minor specializations.

This paper offers two contributions. It highlights
the power of combining plan execution, simulation,
and visualization for the problem of rover control.
It also demonstrates the advantages of using generic
technologies for rapid development of useful systems.
In the remainder of the paper, we will describe the
overall system history and organization, followed by
a more detailed description of each component. We
will then present an example to illustrate the op-
eration of the system. Finally, we will discuss the
ongoing work to extend the system.

2 System Background and Overview

The VIPER system is a science-oriented rover con-
trol system that comprises three technologies: plan
execution, simulation, and visualization. In this sec-
tion we describe the background of the individual
technologies, then describe the organization of the
VIPER system.

Virtual Reality Interfaces Our design for a
rover-control architecture is built around the premise
that a scientist should be able to specify science goals
and to control rover activities with little or no assis-
tance from rover engineers and technologists. This
goal of a science-oriented system stems from a line
of robotic tele-operation research begun in the early
’90s at NASA Ames exploring the use of Virtual Re-
ality (VR) user interfaces for the control of robotic
mechanisms. The visualization technology also de-
rives from this line of work.

The development of VR user interfaces for robotic
control was motivated by the difficulty of operating
complex high degree of freedom mechanisms in un-
known, remote, hazardous environments. In the ab-
sence of a robust fully autonomous capability, the
ability of human operators to understand quickly and
accurately a mechanism’s relationship to its environ-
ment becomes pivotal. It was hypothesized that high
fidelity, interactive, 3D (i.e., VR) representations of
a robot and its environment would effectively lever-
age the human visual system to maximize the band-
width of human-machine communication, and pro-
vide operators with immediate visceral situational
understanding.

The first operational system resulting from this re-
search thrust was the Virtual Environment Vehicle
Interface (VEVI) [Piguet et al., 1995]. VEVI was de-

Figure 1: VEVI interface controlling the Marsokhod
rover.

signed to be a flexible re-configurable VR user inter-
face for robotic mechanisms. Application specific in-
terfaces could be developed by implementing a com-
munications layer utilizing the provided I/O mod-
ules and specifying the geometry and kinematics of
a particular mechanism in a configuration file. VEVI
was used in a number of projects and tests of mobile
robots. The robots controlled with VEVI include
the 8-legged “Dante II” walking robot [Bares and
Wettergreen, 1999] and the 6-wheeled “Marsokhod”
robot [Christian et al., 1997]. Figure 1 shows the
Marsokhod rover being controlled in the VEVI in-
terface. VEVI was used in two modes: 1) robot
telemetry was used to directly drive the state of the
VR environment, and 2) robot operations were first
planned offline by simulation in VEVI and then ex-
ecuted. The second mode was found to be more ef-
fective due to sensor noise and inaccuracy.

In addition to the difficulties cited above, control
of robots operating on other planets adds significant
communication delays. In this situation the ability
to plan the offline in the highest fidelity becomes crit-
ical. Scientists involved in the mission are typically
not highly trained operators, and tools must be pro-
vided that allow them to plan science activities and
analyze data in an intuitive and simple manner. To
achieve this, NASA Ames developed a VR user in-
terface called “MarsMap” [Stoker et al., 1998] and
a high-fidelity 3D-from-stereo terrain reconstruction
capability, the “stereo-pipeline.” MarsMap was de-
veloped for the Mars Pathfinder mission and pro-
vided planetary scientists with a suite of simple in-
tuitive tools to plan image acquisition sequences and
interrogate stereo-pipeline generated terrain models.
The MarsMap environment was highly interactive
and immersive, providing enhanced situational un-
derstanding.

The Viz system used in this work is a succes-

Page 2

Joints

Body

Wheels

Terrain

Constraints

Kinematic Simulator
(VirtualRobot)

Visualization Server
(VIZ)

Real Rover

Conditional Executive

CRL Plan

Figure 2: Overview of VIPER plan execution, simulation and visualization.

sor to MarsMap, initially deployed during the Mars
Polar Lander mission [Nguyen et al., 2001]. Viz
implements an architecture that allows a flexibility
and customizability similar in spirit to VEVI and
presents the user with a highly interactive immer-
sive environment as in MarsMap.

Robot Behavior Simulation The behavior of
the mechanism is reproduced by the VirtualRobot
simulator. VirtualRobot was initially developed at
the Swiss Federal Institute of Technology, Lausanne
(EPFL) by the Virtual Reality and Active Interfaces
Group (VRAI) as an interactive tool to control and
study any kind of robot manipulator [Flückiger et al.,
1998; Flückiger, 1998]. VirtualRobot was based on
a generic kinematic generator. The collaboration of
the VRAI Group with the Autonomy and Robotics
Area of NASA Ames led to extensions of Virtual-
Robot that enable the simulation of rovers in addi-
tion to robot manipulators.

Plan Execution The plan execution component
of this work was inspired in part by work on the Re-
mote Agent (RA), an integrated agent architecture
developed for spacecraft control and deployed as an
experiment on the Deep Space One mission [Bernard
et al., 1998; Muscettola et al., 1998]. The rover exec-
utive demonstrates advances in conditional execution
compared to the RA executive: the language of the
RA executive does not accept conditional sequences,
which are critical to the success and effectiveness of
a rover mission, given the highly variable interac-
tions of the rover and the environment. The current
implementation of the rover executive does not, how-

ever, attempt to reproduce all of the capabilities of
the RA; in particular, multiple concurrent activities,
model-based state reconfiguration, and run-time re-
source selection for state variables are not currently
included in our executive.

VIPER system organization The VIPER sys-
tem comprises the plan execution, simulation, and
visualization subsystems (see Figure 2). These com-
ponents allow the scientists to explore different pos-
sible plans and the expected behavior of the robot in
the virtual environment.

The plan execution component interprets the com-
mand plan, checking conditions and monitoring run-
time requirements of the plan. It sends commands to
the rover simulation component and receives state in-
formation back. The rover simulation component, in
turn, simulates the kinematics of the rover and its in-
teractions with the terrain. The simulator sends pose
information to the visualization component, which
continually updates its environment model and ren-
ders the scene for the viewer.

3 Underlying Technologies

The VIPER system is built on generic technolo-
gies for each of its subsystems, which are special-
ized with data or configuration information to work
with the particular robotic platform and environ-
ment. This allows the system to be used for visual-
ization, test, and design of different, novel, and even
imaginary robotic platforms. In particular, parts of
this technology have been used to model and sim-
ulate the Pathfinder environment, the Mars Polar
Lander robotic arm and camera, the NASA Ames

Page 3

Figure 3: Overview of Viz architecture.

Marsokhod rover, the JPL FIDO rover, and the pro-
posed 2003 MER rover. The entire system has been
demonstrated for the NASA Ames K9 rover.

3.1 Viz

The Viz system developed by the ARA is a modular
system for distributed 3D visualization. It makes use
of high-resolution 3D texture mapped terrain models
and articulated 3D models of robot mechanisms to
generate a high-fidelity, interactive VR environment.
The architecture of Viz facilitates application specific
customization and extension of the 3D visualization
capabilities, tools and user interaction.

Architecture
The architecture of Viz is based on the client-server
paradigm. The core 3D rendering module is imple-
mented as a server to which clients can connect in
order to interact with objects in the Virtual Environ-
ment (see Figure 3). The server is multi-threaded. A
thread is dedicated to each connected client and to
the 3D rendering task. The clients are application
specific and provide interfaces between the visual-
ization server and the rest of the system (including
users). For instance, in the case of robot control, a
client can be connected to a robot’s sensor and can
translate the telemetry into a data format suited for
visualization.

A set of predefined messages allows the clients
to interact with the server. Examples of mes-
sages include add/remove objects, change posi-
tion/orientation, change color, etc. An automati-
cally generated Python/C++ and Java Viz message
interface layer facilitates the development of clients.

The Viz science toolset
A Viz client implementing a set of tools and capabili-
ties was developed by the ARA to support planetary
robotic exploration applications. These include a set
of science analysis tools for interacting with three
dimensional terrain models, and simple simulation
capabilities for planning robotic operations.

Viewpoints Viz supports the simultaneous dis-
play of multiple viewpoints in separate windows.

These viewpoints can be tied to arbitrary reference
frames, allowing, for example, the display of the
viewpoint from a particular image sensor. This ca-
pability is used in VIPER to show images acquired
during plan execution.

Measurement tools The measurement tools al-
low the user to measure the 3D scene. Using a com-
puter mouse controlling a “3D cursor,” the user in-
teractively specifies portions of a scene for measure-
ment. These tools are used by scientists to inter-
rogate 3D terrain models reconstructed from sensor
data.

Markers This tool allows scientists to annotate
terrain by interactively placing objects (typically
synthetic) with accompanying text in the 3D scene.
Familiar objects of known size are also provided to
provide a sense of scale.

Forward kinematic simulation Viz can read
Virtual Reality Modeling Language (VRML) files
defining the geometry and kinematics of robotic
mechanisms. When properly tagged in the file, the
Viz system can identify articulated portions of the
model and allow articulated movement of mecha-
nisms. This movement can either be driven by user
interaction or a Viz client. This capability is used
by VIPER to control the motion of a rover model in
Viz.

Simulated sensor field-of-view Image sensor
fields-of-view can be displayed in Viz as colored semi-
transparent sensor-centered pyramids. In addition, a
sub-window can be opened displaying a simulated
image sensor view of the scene. This allows the
user to visualize the features that will be visible
from a particular position. With an appropriately
tagged VRML model file, image sensors on articu-
lated mounts can be interactively aimed by the user
at interesting features to determine pointing infor-
mation for command generation. In addition, Viz
clients can control such articulated sensor mounts
and their associated fields-of-views. In VIPER, this
is used along with the image sensor viewpoint to pro-
vide visual feedback of image acquisition commands.

Customization of Viz for VIPER

The system architecture of Viz allows platform and
programming language independent integration of
additional capabilities. This flexibility was used to
implement the science analysis and planning capabil-
ity for planetary exploration described above. The
only additional work necessary for Viz to be included
in the overall VIPER framework was the construc-
tion of a rover VRML file including Viz-specific tags
indicating articulations. For convenience and ease
of use, additional toolbar entries were added to the

Page 4

Figure 4: Simulation of K9 rover driving over a rock.

existing science toolset interface providing manual
control of the rover and its image sensors — this is
used for sequence construction. In addition, a but-
ton was added to launch the VirtualRobot simulator.
The total effort required was a few days.

3.2 VirtualRobot Simulation
VirtualRobot was initially developed as an interac-
tive tool to control and study any kind of robot ma-
nipulator [Flückiger et al., 1998; Flückiger, 1998].
The design of VirtualRobot was driven by the fol-
lowing requirements:

• no code writing nor kinematic model is neces-
sary to describe the kinematic behavior of the
robot,

• the program is able to handle the kinematics of
any robot manipulator structure in real-time1,

• an intuitive user interface allows both novices
and experts to easily manipulate robots in a vir-
tual environment.

For these reasons VirtualRobot was based on a
generic kinematic generator: after reading a text file
describing the geometry of the robot, the program
builds a numerical solver which computes the di-
rect and inverse kinematics of the robot. The robot
structure can be serial (as most industrial robots),
parallel (as a Stewart platform) or hybrid (mix of
the previous two). A robot model is created in a
virtual environment and the user is able to interact
with the robot using intuitive 3D input devices (like a
Space-Mouse) or 6 degree-of-freedom force-feedback
devices.

VirtualRobot has been extended to enable the sim-
ulation of rovers in addition to robot manipulators.
The same kinematic solver can now also accommo-
date multi-wheeled rovers with passive suspensions
driving on uneven terrains (see Figure 4). In addi-
tion, rather than being controlled by user input, the
kinematic solver responds to inputs coming from any
other program through the network.

1We consider real-time from a human point of view:
refresh rate in the range of 20Hz to 200Hz.

rover K9 {

 base { // the original location of the rover
 pos { -0.6 4.0 0.1 }
 ori { 0.0 0.0 90.0 }
 }
...
 udpdriver "33005" // how the rover is controlled

 frame 11 { // position the first boogie
 pos { -0.140 -0.316 0.205 }
 ori { 90.0 0.0 0.0 }
 pred 99
 }

 link 1 { // main right bogie
 parameters { theta 0.0 r 0.0 alpha 0.0 d 0.0 }
 type 2 // revolute joint
 pred 11 // hierarchy ('1' is child of '11')
 range { -45.0 45.0 } // limits of the joint
 // graphic object to represent this link
 filename ("right_main_bogie.wrl")
 }
...
 wheel 1 { // rear right wheel
 type 1 // type of wheel (geometry)
 pos { 0.0 0.0 0.0 }
 ori { 90.0 0.0 0.0 }
 pred 13
 filename ("right_wheel.wrl")
 }
...
 constraint { // the end-effector '5'
 frame 5 // must follow the input
 sensor (0 1) // described as sensor '1'
 }
...
} // end of rover description

Figure 5: Excerpts of a robot file description used by
VirtualRobot to build and simulate a rover

The following two sections briefly review the robot
description file and the kinematic solver used in Vir-
tualRobot.

Robot description file

Any robot manipulator, rover or combination of both
can be described in a human readable text file which
is parsed by VirtualRobot. This file contains all the
geometric properties of the mechanical structure to
be simulated. The robot structure can be expressed
with the Khalil-Kleinfinger formalism [Khalil and
Kleinfinger, 1986] (which is also usable for multi-
branch structures, unlike the well known Denavit-
Hartenberg [Denavit and Hartenberg, 1955] nota-
tion) or by using regular reference frames (3 transla-
tions + 3 rotations). The robot is defined as a tree
structure from the base up to each end-effector or
wheel. For robots with kinematics loops, the desired
chain is closed by defining an additional constraint
between two branches of the tree. Similarly, declar-
ing a constraint between any body of the structure
and an input (3D device, network, etc.) will make
the VirtualRobot program compute the appropriate
inverse kinematic behavior of the structure to satisfy
these constraints.

The use of a generic description file (see Figure 5
for an example), to define robots allows rapid sim-
ulation creation for new robot and rover structures

Page 5

as well as easy modification of configurations (for ex-
ample putting a new arm on a rover). For instance,
a kinematic simulation of the Russian six-wheeled
rover Marsokhod with four articulations (see model
in Figure 1) was completed in less than a day.

Generic kinematic solver

The robot structure is represented internally by a
directed graph. The nodes of the graph are the
joints, bodies, input devices or external inputs and
the edges of the graph express the constraints be-
tween these elements. The core solver of Virtual-
Robot traverses this graph and builds the “Aug-
mented Jacobian” of the robot. The Augmented
Jacobian is a matrix (usually non-square) mapping
the joint velocities to the Cartesian velocities (usu-
ally of the end-effector or wheels) for each branch of
the structure. The closed-loop kinematic chains are
also included in the Augmented Jacobian which then
maps the joint velocities to an error vector used to
“close” each loop. To solve the constraints govern-
ing the robot, the Augmented Jacobian is inverted
to find each joint velocity given a set of inputs. Vir-
tualRobot computes the pseudo-inverse of the Aug-
mented Jacobian by doing a Singular Value Decom-
position (SVD). The SVD produces good solutions
in most cases and provides additional information
on the proximity of a singularity2.

The kinematic solver of VirtualRobot computes in
real time the kinematic behavior of any serial or par-
allel, under- or over-actuated structure. The rover
case is handled as a multi-branch manipulator with
a free-floating base. The rover is controlled by giving
displacement vectors for each wheel. The displace-
ment vector is a combination of the wheel speed and
an error vector to “stick” the wheel to the terrain.
A fast algorithm based on a modified elevation map
has been implemented to guarantee the performance.

Customization of VirtualRobot for VIPER

The VirtualRobot system was extended, as described
above, to accommodate wheeled vehicles moving on
a surface. The specific extension needed to incorpo-
rate VirtualRobot into VIPER was to translate in-
ternal parameters into messages to send to Viz and
telemetry to send to the plan executive. Communi-
cation from the plan executive to VirtualRobot was
accomplished via its existing ability to receive inputs
from the network. The total effort required was a few
days.

3.3 Conditional Executive

Throughout a mission, detailed mission operations
plans must be constructed, validated, and uplinked
to a rover. In current practice, a mission operations
plan takes the form of a rigid, time-stamped sequence

2VirtualRobot implements in addition a “Singular Ro-
bust Inverse” algorithm to avoid falling into singularities.

of low-level commands. Unfortunately, there is un-
certainty about many aspects of task execution: ex-
actly how long operations will take, how much power
will be consumed, and how much data storage will
be needed. Furthermore, there is uncertainty about
environmental factors that influence such things as
rate of battery charging or which scientific tasks are
possible. In order to allow for this uncertainty, cur-
rent plans are based on worst-case estimates and con-
tain fail-safe checks. If a task takes less time than
expected, the spacecraft or rover just waits for the
next time-stamped task. If a task takes longer than
expected, it may be terminated before completion,
potentially halting all non-essential operations until
a new command plan is received. Either of these sit-
uations results in unnecessary delays and lost science
opportunities.

To express plans that will handle these sources of
execution uncertainty, we have designed the Contin-
gent Rover Language (CRL), a flexible, conditional
sequence language [Bresina et al., 1999]. as well
as the Conditional Executive (CX). CRL expresses
time constraints and state constraints on the plan,
but allows flexibility in the precise time that actions
must be executed. Constraints include conditions
that must hold before, during, and after actions are
executed; failure of these conditions leads to an exe-
cution failure and potential plan adaptation.

CRL
The basic element of a CRL plan is a node, which
may be a single action, a choice point, or a composite
action that is implemented by a CRL subplan. This
provides a hierarchical structure, where constraints
may be placed on high-level actions as well as in-
dividual actions. The plan may contain branches
to handle contingencies or opportunities that arise
during execution; branches may also specify alterna-
tive courses of action for achieving the mission goals.
Within any contingent branch there may be further
contingent branches, so a plan is a tree of alternative
courses of action. See Figure 6 for excerpts of a plan.
At this time, CRL and the executive do not support
concurrent activities, so there is a single path of exe-
cution through the plan structure. This is sufficient
for current planetary rover operations, but as rovers
grow in complexity, there may be an opportunity and
need for concurrent action execution.

CX
CX is responsible for interpreting the command plan
coming from “mission control,” checking run-time re-
source requirements and availability, monitoring plan
execution, and potentially selecting alternative plan
branches if the situation changes [Washington et al.,
1999].

The input to CX consists of the primary plan and
a set of alternate plans in CRL, as described above.
CX executes each node while verifying that the pre-
conditions, maintenance conditions, and end condi-

Page 6

(block :id plan
:node-list
((task :id drive-1a :comment "drive 2.8m"

:action baseDrive :parameters (0.2 0.0 0 2.8))
(task :id turn-1b :comment "turn right 75 degs"

:action baseDrive :parameters (0.0 0.3 0 1.309))
(task :id drive-1c :comment "drive 0.5m"

:action baseDrive :parameters (0.2 0.0 0 0.5))
(task :id mosaic-1 :comment "take mosaic of Yogi"

:action icmosaic
:parameters ("test1/images/pan1/p3_003"

3 0 0 640 480 3
0.1 -0.8 0.7 -0.4 0.2 0.3 1))

(branch :id branch-on-time

:comment "chooses route based on time"
:options
((option :id opt1

:eligible-conditions ((time 0 60))
:utility 1.0
:node
(block :id branch-1

:node-list

((task :id drive-2a
:comment "drive -0.5m"
:action baseDrive
:parameters (-0.2 0.0 0 0.5))

...
)))

(option :id opt2
:eligible-conditions
((time 60 :plus-infinity))

:utility 0.5
:node
(block :id branch-2

:node-list
(
...
)))

))))

Figure 6: Excerpts of a CRL plan.

tions are respected. CX can be instructed to wait
for a subset of the preconditions (for example, the
start time window) rather than failing the execu-
tion of the node. CX receives state information from
the low-level rover control (or simulation). In the
envisioned overall rover architecture, CX will also
receive higher-level state information from a state-
identification module and resource information from
a resource manager. It uses this information to check
preconditions and maintenance conditions, as well as
to check the eligibility conditions of the plans in the
alternate plan library.

At each point in time, CX may have multiple
options, corresponding to the eligible options of a
branch point and the enabled alternate plans. CX
chooses the option with the highest estimated ex-
pected utility, computed over the remainder of the
plan. In the current implementation, the utility of
successfully completing an atomic action is fixed and
set by operators at mission control. From this atomic
utility and a model of the probabilities of various
events (such as a traverse taking longer than antic-
ipated), the expected utility of an entire branching
plan can be calculated.

When plan execution fails, CX reacts as specified
in the node, either ignoring the action or aborting
the execution and checking for applicable alternate
plans. If execution is aborted and no alternate plans
apply, CX aborts the entire plan set and puts the
rover into a stable standby mode; all operation is

suspended and the rover awaits further plans from
mission control.

CX and CRL were incorporated into the rover au-
tonomy architecture used to control the Marsokhod
rover during a February 1999 field test [Bresina et
al., 1999] and the K9 rover during a May 2000 field
test [Bresina et al., 2001].

Customization of CX and CRL for VIPER
The CRL grammar is generic; only the command
and condition names change from one application to
another. The CX execution semantics rely on the
general CRL properties and not the command and
condition names. As such, the central “execution en-
gine” is completely generic. The only specializations
needed are in terms of communication with the exter-
nally controlled rover (or simulation). These are ac-
complished with C++ subclassing that is completely
transparent to the execution engine.

In order to control the K9 rover, the CRL “com-
mand dictionary” was defined, as well as routines
that CX calls to translate CRL commands to mes-
sages to the rover. To incorporate CX and CRL into
VIPER, the same command dictionary was used, but
the translation routines were changed to communi-
cate with the simulation rather than the actual rover.
In all, the total effort was no more than a week, much
of that to separate out the parts common to the ac-
tual and simulated rover to avoid code duplication.

4 Illustrative Example

Consider a simulation of a rover moving in the Mars
Pathfinder environment. VIPER presents the viewer
with three main windows that show: 1) a 3D visu-
alization of a mobile robot at the Mars Pathfinder
landing site executing a plan, 2) a display showing
the VirtualRobot parameters, and 3) a 2D text dis-
play of the robot executive status. See Figure 2 for
representative screen images.

4.1 Scenarios

Consider the scenario where the rover is located next
to the lander, as in Figure 7. The next goals to
achieve may include getting a close-up mosaic of
Yogi, the largest rock in the environment, followed by
a traverse around the lander to near the second ramp
(Ramp2). Depending on the data storage available
after the mosaic ends, the rover may decide to tra-
verse via either side of the lander; one has more rocks
that are interesting scientifically, the other has fewer.
In either case images will be acquired of the targets
during the traverse. If the time is too short, the rover
will remain near the first lander ramp (Ramp1).

These three main scenarios, shown schematically
in Figure 8 and graphically in Figure 7, are the result
of data, power, and time limitations on plan execu-
tion.

The first scenario illustrates the effects of a time
shortage in the absence of any data storage short-

Page 7

Figure 7: Side view of rover traverses.

Ramp 1

Yogi

Flat top

Mint JulepDragon

Ramp 2

If time limited

If data limited

Figure 8: Possible plan branches.

age. The rover will traverse to a single location and
return immediately. From the “Ramp 1” location,
the rover will proceed to the “Yogi” location and re-
turn directly to “Ramp 1.”

The second scenario is the situation when there
are no data or time limitations. From the “Ramp
1” location, the rover will proceed to the “Yogi” lo-
cation, continue on to “Dragon,” “Flat top,” and
finally “Ramp 2.”

The final scenario is the result of a data storage
shortage. The rover will stop at only two locations
to take images because of the resource limitations.
From the “Ramp 1” location, the rover will proceed
to the “Yogi” location, “Mint Julep,” and finally
“Ramp 2.”

5 Current Directions

In parallel to the development of VIPER, a new
project called the Mission Simulation Facility (MSF)
has been started. The Mission Simulation Facility is
being developed as a simulation environment where
developers of autonomous control systems can test
their system’s performance against a set of integrated
simulations of NASA mission scenarios.

The MSF will propose a common framework, built
on top of the standardized High Level Architecture
(HLA) [DMSO, 2000], allowing the different com-
ponents of the simulation to interact together in a
structured and extensible manner. In addition, MSF
will provide a common set of messaging facilities al-
lowing developers of autonomous software to inter-
act with the simulation in the same manner as they
would with a physical robotic system.

The MSF framework will be first applied to the
VIPER application. It will unify the communica-
tion between the different components (Conditional
Executive, VirtualRobot and VIZ) and at the same

Page 8

Applications

Le
ve

ls
 o

f A
ut

on
om

y

Autonomy
Research
Software

&
Algorithms

MSF Generic
Modules

MSF
Simulation

Real Robotic
System

Common Interface

R
ea

l W
or

ld

S
im

ul
at

io
n

F
un

ct
io

na
l

La
ye

r
P

la
nn

in
g

/
S

ch
ee

du
lin

g

Figure 9: Scope of MSF.

time simplify their integration into a more reliable
simulation.

As shown in Figure 9, MSF will provide simulation
environments which could be used at different level of
integration. For example a research lab could have
a complete system from the top level autonomy to
the low level hardware control: in this case MSF will
only provide a replacement for the robotic hardware
and the environment with the simulation. On the
other hand, one could need to test a very high level
autonomy component, without having the rest of the
system: in this case, MSF will also provide generic
components replacing the missing parts.

From an implementation point of view, MSF will
rely on the publish/subscribe scheme used in HLA:
each component of the simulation will communicate
with the other components using a standard set of
objects/messages defined for the purpose of MSF.
The HLA Run-Time-Infrastructure (RTI) manages
all the communications between the participants of
the simulation. The RTI also provides facilities to
address the problem of Time-Management which is a
key point in a simulation like MSF because its differ-
ent components are not necessarily designed to run
in real time.

The Figure 10 shows a simple simulation example:
it is composed of several components which are all
connected to the RTI for communication. They also
have access to a separate database to avoid overload-
ing the network when accessing large objects like im-
ages. The autonomous software is decomposed into
two distinct objects for clarity: each uses a differ-
ent set of messages to interact with the simulation.
Consider in this example that they send commands
to a simulated robot. The kinematic simulator (like

Kinematic
Simulation

Visualization
/Data Logger

Autonomous
Software
(Rover

Control)

RTI

Sensor Data
Generation

Autonomous
Software
(Sciencel)

Database

m
ov

e_
to

ta
ke

_i
m

g
bo

dy
_p

os
e

bo
dy

_p
os

e

im
ag

e_
da

ta

m
ov

e_
to

ta
ke

_i
m

g

messages
examples

Figure 10: MSF Sample Simulation Instantiation.

VirtualRobot) will then compute the behavior of the
robot in response to the commands and return var-
ious sensor updates. If the autonomous software re-
quests the acquisition of scientific data (like an im-
age), then the sensor data generator will return ei-
ther simulated data or real data extracted from a
database. Visualization tools (like VIZ) could also
be connected to the simulation to help the user eval-
uate the behavior of the autonomous system.

The development of MSF will provide a set of tools
(simulation components / robotic systems library)
that should speed up the testing process for the de-
velopers of autonomous systems. In addition, the
proposed framework will help advance the develop-
ment of standardization of communication between
autonomous software and robotic hardware.

References

[Bares and Wettergreen, 1999] J. Bares and D. Wet-
tergreen. Dante II: Technical description, re-
sults and lessons learned. International Journal
of Robotics Research, 18(7):621–649, July 1999.

[Bernard et al., 1998] D. E. Bernard, G. A. Dorais,
C. Fry, E. B. Gamble Jr., B. Kanefsky, J. Kurien,
W. Millar, N. Muscettola, P. P. Nayak, B. Pell,
K. Rajan, N. Rouquette, B. Smith, and B. C.
Williams. Design of the remote agent experiment
for spacecraft autonomy. In Proceedings of the
1998 IEEE Aerospace Conference, 1998.

[Bresina et al., 1999] J. L. Bresina, K. Golden, D. E.
Smith, and R. Washington. Increased flexibility
and robustness of Mars rovers. In Proceedings of i-
SAIRAS ’99, The 5th International Symposium on

Page 9

Artificial Intelligence, Robotics and Automation in
Space, 1999.

[Bresina et al., 2001] J. L. Bresina, M. G. Bualat,
L. J. Edwards, R. M. Washington, and A. R.
Wright. K9 operations in May ’00 dual-rover field
experiment. In Proceedings of i-SAIRAS ’01, The
6th International Symposium on Artificial Intelli-
gence, Robotics and Automation in Space, 2001.

[Christian et al., 1997] D. Christian, D. Wetter-
green, M. Bualat, K. Schwehr, D. Tucker, and
E. Zbinden. Field experiments with the ames mar-
sokhod rover. In Proceedings of the 1997 Field and
Service Robotics Conference, December 1997.

[Denavit and Hartenberg, 1955] J. Denavit and
R. Hartenberg. ”a kinematic notation for lower
pair mechanism based on matrices. Journal of
Applied Mechanics, 22(2):215–221, 1955.

[DMSO, 2000] DMSO, 2000. HLA official web page,
URL: http://www.dmso.mil/index.php?page=64.

[Flückiger et al., 1998] L. Flückiger, C. Baur, and
R. Clavel. CINEGEN: a rapid prototyping tool
for robot manipulators. In Gerhard Schweitzer,
Roland Siegwart, and Philippe Cattin, editors,
The Fourth International Conference on Motion
and Vibration Control (MOVIC’98), volume 1,
pages 129–134, Zürich, Switzerland, 1998.

[Flückiger, 1998] L. Flückiger. Interface pour le
pilotage et l’analyse des robots basée sur un
générateur de cinématiques générales. (in french),
EPFL (Swiss Federal Institute of Technology, Lau-
sanne), Switzerland, 1998.

[Khalil and Kleinfinger, 1986] W. Khalil and J. F.
Kleinfinger. A new geometric notation for open
and closed-loop robots. In IEEE, editor, Con-
ference on Robotics and Automation, pages 1174–
1180, San Francisco, April 1986.

[Muscettola et al., 1998] N. Muscettola, P. P.
Nayak, B. Pell, and B. C. Williams. Remote
agent: To boldly go where no AI system has gone
before. Artificial Intelligence, 103(1/2), August
1998.

[Nguyen et al., 2001] L. Nguyen, M. Bualat, L. Ed-
wards, L. Flueckiger, C. Neveu, K. Schwehr, M. D.
Wagner, and E. Zbinden. Virtual reality interfaces
for visualization and control of remote vehicles.
Autonomous Robots, 11(1), 2001.

[Piguet et al., 1995] L. Piguet, B. Hine, P. Hontalas,
and E. Nygren. VEVI: A virtual reality tool for
robotic planetary exploration. In Proceedings of
Virtual Reality World, February 1995.

[Stoker et al., 1998] C. Stoker, T. Blackmon, J. Ha-
gen, B. Kanefsky, D. Rasmussen, K. Schwehr,
M. Sims, and E. Zbinden. MARSMAP: An in-
teractive virtual reality model of the Pathfinder
landing site. In Proceedings of the Lunar and Ple-
tary Science Conference, 1998.

[Washington et al., 1999] R. Washington,
K. Golden, J. Bresina, D. E. Smith, C. An-
derson, and T. Smith. Autonomous rovers for
mars exploration. In Proceedings of The 1999
IEEE Aerospace Conference, 1999.

Page 10

	MAIN MENU
	Table of Contents

	Search CD-ROM
	Search Results
	Print

